I-14

In situ Measurement of H, D, T Retention in the JET Tungsten Divertor Components - Lessons Learned for the ITER LID-QMS Diagnostic

*Miroslaw Zlobinski*¹, Gennady Sergienko¹, Ionuţ Jepu², Chris Rowley², Anna Widdowson², Rob Ellis², Domagoj Kos², Ivor Coffey³, Martin Fortune², David Kinna², Misha Beldishevski², Laura Laguardia⁴, Gabriele Gervasini⁴, Andreas Krimmer¹, Horst Toni Lambertz¹, Alexis Terra¹, Alexander Huber¹, Sebastijan Brezinsek¹, Timo Dittmar¹, Meike Flebbe¹, Rongxing Yi¹, Rahul Rayaprolu¹, Sebastian Friese¹, Philippe Mertens¹, Ilia Ivashov¹, Yury Krasikov¹, Krzysztof Młynczak¹, Jochen Assmann¹, David Castaño Bardawil¹, Michael Schrader¹, Philip Andrew⁵, Xi Jiang⁵, João Figueiredo⁶, Peter Blatchford², Scott Silburn², Emmanuelle Tsitrone⁷, Emmanuel Joffrin⁷, Karl Krieger⁸, Yann Corre⁷, Antti Hakola⁹, Jari Likonen⁹, The EUROFUSION TOKAMAK EXPLOITATION Team¹⁰, The JET CONTRIBUTORS Team¹¹

¹Forschungszentrum Jülich GmbH, Jülich, Germany

²UKAEA, Culham Campus, Abingdon, United Kingdom

³Queen's University Belfast, Belfast, Northern Ireland, United Kingdom

⁴Istituto per la Scienza e Tecnologia dei Plasmi, CNR, Milano, Italy

⁵ITER Organization, St-Paul-lez-Durance, France

 $^6\mathrm{EURO}f\mathrm{usion}$ Programme Management Unit, Garching, Germany

⁷CEA, Institute for Research on Fusion by Magnetic confinement, St-Paul-lez-Durance, France

⁸Max–Planck-Institut für Plasmaphysik, Garching, Germany

 $^9\mathrm{VTT}$ Technical Research Centre of Finland Ltd, Espo
o, Finland

¹⁰See the author list of E. Joffrin et al., Nuclear Fusion 64 (2024) 11, doi:10.1088/1741-4326/ad2be4, Germany

 11 See the author list of C.F. Maggi et al., Nuclear Fusion 64 (2024) 11, doi:10.1088/1741-4326/ad3e16, United Kingdom

It is important to monitor the retention of hydrogen isotopes at PFCs with respect to tritium due to radiation safety, w.r.t. the fusion fuel (D, T) due to the fuel cycle and for all hydrogen isotopes due to their material degradation effect. In 2023 a new in situ retention diagnostic has been installed on JET [1] and its first quantitative results will be presented here.

The diagnostic relies on Laser-Induced Desorption that thermally releases retained gases and their detection by Quadrupole Mass Spectrometry – thus called LID-QMS. The detection limit was so low that we detected the long-term D retention from each individual laser spot of 3 mm diameter along the whole poloidal scan of the upper inner divertor of JET. Then, during the DT campaign even the low T amount of one week of DT operation was detected due to a fast laser raster mode. This allowed to monitor the T retention every week and after the DT campaign the T depletion due to different T removal techniques was observed by repetitive LID-QMS measurements. Hence, this diagnostic not only allows direct access to retention physics and identification of high retention areas, but also the assessment of T removal techniques.

Therefore, LID-QMS is already under design as Tritium Monitor Diagnostic for ITER benefitting from the lessons learned at JET. Similarities and differences to the application at JET will be shown and new challenges at ITER will be discussed.

[1] M. Zlobinski, et al. Nucl. Fusion 64, 086031 (2024), doi:10.1088/1741-4326/ad52a5